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Summary—The properties of the impedance and scattering
matrix describing waveguide discontinuities are examined; both
propagating and evanescent modes are considered.

It is shown how different normalization conditions for the normal
mode solutions in the guide affect the impedance matrix. A suitable
choice of normalization always leads to a symmetric imaginary
impedance matrix for a lossless structure.

The scattering matrix is no longer symmetric or unitary. The
simple relationship S=(Z— U)(Z+4U)™! is shown to hold only under
special normalization conditions.

Next the matrices describing a plane of lossless obstacles ar-
ranged in a periodic array are examined. A different type of nor-
malization condition must be used here, since the normal modes
are orthogonal in the conjugate sense (biorthogonal).

Although the structure is reciprocal, none of the matrices is sym-
metric. A suitable normalization leads to a skew-hermitian im-
pedance mattix and to a unitary submatrix of the scattering matrix
corresponding to propagating modes.

INTRODUCTION

N TREATING the problem of propagation of elec-
J:[ tromagnetic waves past waveguide discontinuities

it is often convenient to define a set of equivalent
voltages and currents, corresponding to linear combina-
tions of incident and reflected wave amplitudes, there-
upon reducing it to a circuit problem. The equivalent
circuit for the discontinuity lends itself to description in
terms of the usual circuit type matrices such as the im-
pedance, admittance, scattering or other matrix.

The properties of the above matrices have been de-
scribed by Montgomery, Dicke and Purcell,! and Kerns?
when only propagating modes are considered. This is
normally the case when the terminal planes on which
voltages and currents are defined are chosen far enough
from the discontinuity. However, in many cases one
cannot neglect the effect of the evanescent modes, as
for example when two discontinuities are closely spaced.

The purpose of this paper is to study the properties
of the matrices describing waveguide discontinuities,
or plane lattices of scatterers, when both propagating
and evanescent modes must be considered.

It is important to note that voltages and currents are
defined quantities and as such they can be chosen in
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different ways. Correspondingly the properties of the
resulting matrices will be affected by that choice. An
alternate way to see this arbitrariness in the definition
of the voltages and currents is to note that the normal
mode solutions in the waveguide can be normalized in
different ways.

NORMALIZATION OF MODES

To be specific, consider a rectangular waveguide with
a discontinuity extending in the z direction from 2; to 2,
as in Fig. 1. The transverse fields on the two sides of the
discontinuity can be expanded?® in a set of normal modes
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Fig. 1—A general waveguide discontinuity.

e. and h, are normal mode functions in the guide and
are related by means of a dyadic impedance or admit-
tance

e, = Z, h,
h,=T7,e, (2a)
where
Zn = Z,(aa, — a,a,)
Y. = Y.(a,a, — a.a,). (2b)

Z, and Y, are the scalar wave impedance and admit-
tance and are real for propagating modes and imaginary
for evanescent modes.

#R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill
Book Company, Inc., New York, N. Y., ch. 5; 1960
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The normal mode functions e,, h, are orthogonal in
a waveguide. Also one of the two functions can always
be chosen real. We will assume in the following that e,
is real. These functions can be normalized in a variety of
ways; some of the possibilities will now be considered.

Let

ff e, X h,-dS = mef en-endS = VN 8um, (3)
s s

where S denotes the waveguide cross section and N, is a
real positive normalization constant, arbitrary as yet.

We choose the voltages to be proportional to the
amplitude of the transverse electric field and the cur-
rents proportional to the amplitude of the transverse
magnetic field, thus

Vn+ = Klnan
In_l_ = K?nan

V., =
I, =

Klubn
— Kanby. (H

In order to keep the complex power flow invariant it is
necessary that

W I)* = KKt | 6, |2 = 3V Na| au[? (52)
or
K, Ko* = V. N,. (5b)
Also we may choose
V.t Ky
oLt Ka ©)

where Z,. is any convenient characteristic impedance
for the equivalent transmission line.

It can be seen from (5b) that for propagating modes
K1, and K,, can both be chosen real since Y, is real.
However, for evanescent modes at least one of the two
constants must be chosen imaginary.

One can still choose both K, and K, real in all cases
provided the definition of complex power flow is modi-
fied as follows:

%Vn([n—’-)* = %Irnzvni ay IZ = %KlrzKﬁn*

a2 (7a)

for propagating modes,

_.t %jvn (In+) * = % Ifn*]vn

423 '2 - i %thLA"Jn*i an

2 (7h)

for evanescent modes.

In (7b) the upper sign holds for H modes and the
lower sign for £ modes.

Before actually choosing a specific normalization we
will first derive some general properties of the impedance
matrix.

IMmpEDANCE MATRIX

We will nuraber the modes on the two sides of the dis-
continuity in consecutive order, that is, we can define a
voltage vector and current vector (column matrix)

V=Vt+v-
[=1It—1I" (8)
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where
Vit Vi
vVt =

and similarly for the currents. In view of the linearity
of Maxwell's equations we have

V =2zl ©)

where Z is the impedance matrix.

Consider first two independent solutions to Maxwell’s
equations satisfying boundary conditions in the guide.
The following relation then holds in a reciprocal me-
dium:

V-(E' X H> — E* X H') = 0. (10)

The superscripts refer to the two independent solutions.
When this relation is integrated over a region enclosing
the discontinuity we obtain

fffvv-(El X H? — B> X H')dv

ff (E' X H*» — E* X H")-dS
S

il

ni¥ p 0
o >
Indh2n

2 (VL2 — VALY (11)
where it was assumed that the transverse fields have
been expanded in normal modes with the normalization
as given by (3).
Consider now two conditions for the terminal planes:
Condition 1) \

Vi=0 msi 1= V,Vp
Condition 2)
V.i=20 n g Ij'=Y;V .
Then it follows from (11) that
YN, VN,

Vi = Vet (12)
! K11K2'i ! KIJAZf

where Y, and ¥j; are elements of the admittance ma-
trix. The admittance matrix, and thus the impedance
matrix, will be symmetric if

Y:N; _ Y]'ZV]' ) (13)

KKy a K1;Ko;

At this point we will make the choice of normaliza-
tion. Consider the following cases:

Case I)
ff e.-edS =N =1,
S

b

(14)
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Using (5b) we must have
KanQn* = Yn*~

We can then choose Ki,=1 and K,,=Y,. With this
choice (13) is satisfied and thus

Vi= Y andalso Zy;= Z.

Case 1)

1
—- for propagating modes

J Y”
ff e, edsS =N, = )
8 | g

:r— for evanescent modes
n

- (15)

The (4) and (—) signs correspond to & and H modes.
Again using (5b) we must have

K. K.*=1 for propagating modes,

K,Ks* = T4 for evanescent modes.

This then allows us to choose
K, = Ky, =1 for propagating modes,

Ky, =1, Ks, = +j forevanescent modes.
With that choice (13) is satishied and both the ad-
mittance and impedance matrix are again symmetric.
Further properties of the impedance matrix can be
derived from the energy condition. Integrating the com-
plex Poynting vector over a region containing the dis-
continuity we obtain

1 1
7ffE><H*~dS= P4 20(W, — W) =*2—VI* (16)
8

where the tilde stands for the transposed matrix. If the
structure is lossless

P=0=13%Re(VI*) = i[I*Z+ Z¥1].
Then

Z4+7*=0 (17

since Z=27.

We conclude that under normalization condition (14)
or (15) with the definition of complex power in the sense
of (5b) the impedance matrix of a lossless discontinuity
is symmetric and imaginary. The same holds for the
admittance matrix.

It is sometimes convenient to choose the character-
istic impedances of the equivalent transmission lines as
unity for all modes. As we have seen before (5b) does
not allow us that choice unless we resort to the modified
definition of complex power flow as given by (7a) and
(7b). Using (15) we obtain

KanZn* = 1
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for both propagating and evanescent modes. It is now
possible to choose

Kln = KZn = 1~
The properties of the impedance matrix are now some-

what different. It is convenient to partition the voltage,
current and impedance matrices as follows:

[n]_[wm][&A}rﬂ
V. [Zo] [Ze]ALI.
where the subscripts p and e refer to propagating and

evanescent modes.
The reciprocity relation (11) now becomes

(18)

Vo2 — V2 + §[VAr2 — VeI =0, (19

The upper sign holds for £ modes and the lower sign for
H modes. Consider now the following conditions for the
terminal planes:

Condition 1)

0
TQ
I

|0
-0

[[p2] =

With

[Vpl] = Zfi[]pl] [VPQ] = Z1‘j[Ip2]

we obtain

The submatrix [Z,,] is symmetric. We now assume
that only E or H modes are present, otherwise, because
of the sign ambiguity in (19) further partitioning of the
impedance matrix is necessary to obtain its properties.

Condition 2)

- o
0 0
=] . 72 =1 .
=] L -
[ 0 [ 0

We then obtain

Zi, = Zj for the [Z,.] submatrix.
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Condition 3)

0 7] [~ 0 7]
0 0
P I T
17,] L [7] Lt
L 0 _ L0
With
[Vpl] = Zwi/[leg] [Ve2] = Zepjl[lpl]
we obtain

2,1t 2,77 =0 (20)
or more generally
[Zep] = ij[zm]‘

If we now impose the energy condition for a lossless
structure on the impedance matrix we have

P =0=Rel[l,*V, + jI*V.] = Re [I,*Z,,1,]
+ Re[+1.*Z,.0.] + Re [I,*Z,.01.]
+ Re [+jI*7.,1,).

Therefore

[Zpp] + [Zop*] =0 [Zpp] is imaginary
[Ze| = [Zo¥] =0 [Z,] is real.
Also
1 Zpe ¥ jZ" 10 = 0
Therefore
[Zpe T jZ.*1=0 (21)
but
1 Zpe + §Zep] = 0.
Then
[Zoe] = [+5Ze*] = [F)Ze]
[Zep* 4 Zop] = 0.
Therefore

[Z.,] is imaginary

[Z,.] is real.

SCATTERING MATRIX

An alternate description of waveguide discontinuities
is by means of the scattering matrix.
We define the matrix by

V== SV+. (22)
If we choose Ky, =K, =1 for all modes then
V=Vt4+V-=ZUIt4+1")=2Z(Vt - V")
Z-U0)v+t=(Z+ )V
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and

S=(Z+ U)yYz - U). (23)

The matrix S given by (23) is not symmetric since Z
is not symmetric for this case. Also S is not a unitary
matrix any more.

Conditions (14) and (15) do not lead to a simple rela-
tionship between the impedance matrix and the scat-
tering matrix, because the characteristic impedances of
the equivalent transmission lines are real for propagat-
ing modes and imaginary for evanescent modes. The
properties of the scattering matrix as given by (23) will
be studied in a later part of this paper.

MATRICES OF PERIODIC ARRAYS OF SCATTERERS

We now consider a plane of lossless obstacles arranged
in a periodic array; no longer is it possible here to use
normalization conditions (14) or (15) because the nor-
mal mode solutions in the structure are always complex
such as to satisfy periodic boundary conditions in the
transverse plane,

The following normalization procedure, in the con-
jugate sense, can be used for both a lossless discontinuity
in a guide and an array of lossless scatterers.

Let

ff e, X hy*-dS = V,* ff enen dS = Vu¥N,bum (24)
8 8

where S denotes the cross section of the unit cell in the
structure and NN, is a positive real normalization con-
stant.

It should be noted that it is still possible to normalize
the modes in a lossless periodic structure as in (14) or
(15) provided one restricts propagation to incidence
normal to the plane. That is indeed the case since the E
and H modes are orthogonal in a periodic structure of
this sort just like in a waveguide. Again consider two
cases:

Case I)
ff e. e dS=N,=1 (25)
8
Case II)
1 .
= for propagating modes
ff en'en*dS = " . ' (26)
8 7
t+ 7 for evanescent modes

The upper sign holds for £ modes and the lower for H
modes. A reciprocity relation can be written for the
field in the structure as follows:

V-(E' X H* + E* X H') = 0. 27)
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However, this relation assumes a lossless structure.
Therefore, it is easier to use directly the energy condi-
tion.

The complex Poynting vector integrated over the
terminal planes of a unit cell yields

1

1 -
—z—ff E X H*dS = 2jo(Wy, — W,) = ) vrx  (28)

if one defines complex power in the sense of (5b) with
normalization given by (25) or (26).
The structure is lossless so

P=0=1%Re (VI*) =1J*ZI + I*Z*])

or Z+27*%=0. The impedance matrix is thus skew-
hermitian.

However, if normalization condition (26) is used to-
gether with the power definition (7a) and (7b) the com-
plex integration yields

Re (I,*Z,,1,) + Re (£51.*Z..0.) + Re (I,*Z,.1,)
+ Re (+51*2,,1,) = 0
where [Z] is partitioned as in (18). We must then have

[Z,0] + 1Z,5*] =0 or [Z,,] is skew-hermitian
[Z.o] = [Ze¥] =0 or

(2] F [i247] = 0.

[ZN] is hermitian

This impedance matrix is related to the scattering
matrix by means of (23). No simple relationship exists
between the .S and Z matrices obtained from any other
normalization.

To obtain the properties of the scattering matrix we
partition it as follows:

Ve [Son]  [Soe [V
[V;J B [[Sw] [See]} [V,ﬁ} (29)
The real power is given by
P=0= (), ~ (7)) ¥,
VAV - TV =0  (30)

for a lossless structure.
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Using (29) this becomes
Py [0 = St Spp] Vit
— (F*[Sp*Spe F j(See — SeM)]VeF
— (Ve)*[Sps*Smp F iSenl Vit
— (T*[Sn™Spe £ jSp* Vet = 0.
This then yields
[S0o*][S0a] = [U] or
[See = Sut] = £ 5185*][S5e)
[gpp*] [Sptf] + [jSep] = 0.

The above scattering matrix is defined with normaliza-
tion given by (26) and power definition given by (7a)
and (7b).

[S,p] is unitary

CONCLUSION

In conclusion we have shown that for a lossless dis-
continuity in a waveguide it is always possible to choose
the equivalent voltages and currents such as to obtain
an impedance matrix which is symmetric and imaginary
just like in the case when only propagating modes are
present. For this case however the characteristic im-
pedance of the equivalent transmission lines are real for
propagating modes and imaginary for the evanescent
modes. This normalization is preferable when both E
and H modes are present because it avoids the sign
ambiguity of (19) in the derivation of the properties of
the impedance matrix.

If one tries to make all characteristic impedances of
the transmission lines real for all modes the correspond-
ing impedance matrix is no longer symmetric or imagi-
nary.

For a periodic array of scatterers it is possible to
choose voltages and currents such that the impedance
matrix is skew-hermitian. Although the structure is
reciprocal the impedance matrix is not symmetric.

The scattering matrix is no longer symmetric or uni-
tary in either case; it is only possible to obtain a unitary
submatrix corresponding to propagating modes.
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