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Summary—The properties of the impedance and scattering
matrix describing waveguide discontinuities are examined; both

propagating and evanescent modes are considered.

It is shown how different normalization conditions for the normal
mode solutions in the guide affect the impedance matrix. A suitable
choice of normalization always leads to a symmetric imaginary

impedance matrix for a lossless structure.

The scattering matrix is no longer symmetric or unitary. The
simple relationship S = (Z— U)(Z+ TJ-l is shown to hold only under

special normalization conditions.

Next the matrices describing a plane of lossless obstacles ar-

ranged in a periodic array are examined. A different type of nor-

malization condition must be used here, since the normal modes

are orthogonal in the conjugate sense (biorthogonal),

Although the structure is reciprocal, none of the matrices is sym-

metric. A suitable normalization leads to a skew-hermitian im-

pedance matlix and to a unitary submatrix of the scattering matrix

corresponding to propagating modes.

INTRODUCTION

I

N TREAT I NC, the problem of propagation of elec-

tromagnetic waves past waveguide discontinuities

it is often convenient to define a set of equivalent

voltages and currents, corresponding to linear combina-

tions of incident and reflected wave amplitudes, there-

upon reducing it to a circuit problem. The equivalent

circuit for the discontinuity lends itself to description in

terms of the usual circuit type matrices such as the im-

pedance, admittance, scattering or other matrix.

The properties of the above matrices have been de-

scribed by Nfontgornery, Dicke and Purcell, 1 and Kernsz

when only propagating modes are considered. This is

normally the case when the terminal planes on which

voltages and currents are defined are chosen far enough

from the discontinuity. However, in many cases one

cannot neglect the effect of the evanescent modes, as

for example when two discontinuities are closely spaced.

The purpose of this paper is to study the properties

of the matrices describing waveguide discontinuities,

or plane lattices of scatterers, when both propagating

and evanescent modes must be considered.

It is important to note that voltages and currents are

defined quantities and as such they can be chosen in
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different ways. Correspondingly the properties of the

resulting matrices will be affected by that choice. An

alternate way to see this arbitrariness in the definition

of the voltages and currents is to note that the normal

mode solutions in the waveguide can be normalized in

different ways.

NTORMMJZ.4T10N oF lb!ODES

To be specific, consider a rectangular waveguide with

a discontinuity extending in the z direction from Z1 to Zz

as in Fig. 1. The transverse fields on the two sides of the

discontinuity can be expanded3 in a set of normal modes

Fig. 1—A general waveguide discontinuity.

en and hn are normal mode functions in the guide and

are related by means of a dyadic impedance or admit-

tance

en = Z~.hn

hn = ~.em (2a)

~rhere

Tn = F,,(a.az – a.a. ). (2b)

Z,, and 1“. are the scalar wave impedance and admit_

tance and are real for propagating modes and imaginary

for evanescent modes.

3 R. E. Collin, “Field Theory of Guided Jvaves, ~~McGralv-Hill
Book Company, Inc., New York, N. Y., ch. 5; 1960
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The normal mode functions e., h. are orthogonal in

a waveguide. Also one of the two functions can always

be chosen real. We will assume in the following that e,,

is real. These functions can be normalized in a variety of

ways; some of the possibilities will now be considered.

Let

SSenXhm.dS = Y. JTenemdS = Yfi,.Y,,ti,,m, (3)
s S

where S denotes the waveguide cross section and N,, is a

real positive normalization constant, arbitrary as yet.

Itre choose the voltages to be proportional to the

amplitude of the transverse electric field and the cur-

rents proportional to the amplitude of the transverse

magnetic field, thus

Vn~- = Klnan Vn– = A-l,,bn

In+- = Ktna~ In- = – K,.b.. (A)

In order to keep the complex power flow invariant it is

necessary that

+V.+(l.+)* = +KI.Kz.* I a,, 1’ = + Y.*N. I an /’ (5a)

or

KI.KZ. * = y,’*.qrR . (5b)

Also we may choose

Vn+ A-ln,
— = Z,n, (6)

1~~ = &),

where Z,. is any convenient characteristic impedance

for the equivalent transmission line.

It can be seen from (5b) that for propagating modes

h-l,, and K~,, can both be chosen real since Y,, is real.

However, for evanescent modes at least one of the two

constants must be chosen imaginary.

One can still choose both Kl,, and K~,, real in all cases

provided the definition of complex power flow is modi-

fied as follows:

iV,,(I~+)* = j Y,,N~ ] a. 1’ = ~K,,,Kz.* I a,, 1’ (7a)

for propagating modes,

i *jv)t(In+) * “ + I’.*N. ) an 1’ = i ljK~,Ar,~* ~ a,, 1’ (7b)

for evanescent modes.

In (7b) the upper sign holds for H modes and the

lower sign for E modes.

Before actually choosing a specific normalization we

will first derive some general properties of the impedance

matrix.

IMPEDANCE M.&TRTX

We will number the modes on the two sides of the dis-

continuit~- in consecutive order, that is, we can define a

voltage vector and current vector (COIU mn matrix)

~=v++~-

1=1+–1– (8)
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where

‘++]‘-=[1
and similarly for the currents. In view of the linearity

of ~~[axwell’s equations we have

V=ZI (9)

where Z is the impedance matrix.

Consider first two independent solutions to hlaxwell’s

equations satisfying boundary conditions in the guide.

The following relation then holds in a reciprocal nle-

dium:

V.(EIXW – J9xw) = ‘o. (lo)

The superscripts refer to the two independent solutions.

When this relation is integrated over a region enclosing

the discontinuity we obtain

SSSV.(E1 X H’ – E’ X I+)dv
v

—-JJ(E’ X H – E X H]-).dS
s

= ~ (vr,’In’ – vn’In’)+t = o (11)
n J . .

where it was assumed that the transverse fields have

been expanded in normal modes with the normalization

as given by (3).

Consider now two conditions for the terminal planes:

Condition 1)

Condition 2)

v,,’ = o lL#j -Tjl = I’jtl”,] .

Then it follows from (11) that

(12)

where Yil and Yji are elements of the d mittance ma-

trix. The admittance matrix, and thus the impedance

matrix, will be symmetric if

Yi.V~ y.jl~j

_ .— .

Klih”i KljK’j
(13)

At this point we will make the choice of nornlaliza-

tion. Consider the following cases:

Case I)

H e,,. e,,dS = .1”, = 1.
,~

(14)
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Using (5b) we must have

Kl~K9a* = y *
n.

We can then choose Kl~ = 1 and Kzn = Y.. With this

choice (13) is satisfied and thus

Yii = Yj~ and also Zij = Zjj.

Case II)

I

~- for propagating modes

Sse.. e,,dS = ll’n = ‘, . (15)
s

~~ for evanescent modes
! Yn

The (+) and ( – ) signs correspond to E and H modes.

Again using (5b) we must have

KI.L’2.* = 1 for propagating modes,

KlnK2n * = T j for evanescent modes.

This then allows us to choose

k-l. = Kz. = 1 for propagating modes,

IYln = 1, K,. = t~ for evanescent modes.

With that choice (13) is satisfied and both the ad-

mittance and impedance matrix are again symmetric.

Further properties of the impedance matrix can be

derived from the energy condition. Integrating the com-

plex Poynting vector over a region containing the dis-

continuity we obtain

1

Ss
E X H*. dS = P + 2~@Vm – W.) = : ~1* (16)

Ys

where the tilde stands for the transposed matrix. If the

structure is lossless

P = O = ~ Re (~1*) = ~[~*(Z + ~*)lj.

Then

Z+ Z*=O (17)

since Z = 2?.

We conclude that under normalization condition (14)

or (15) with the definition of complex power in the sense

of (5b) the impedance matrix of a lossless discontinuity

is symmetric and imaginary. The same holds for the

admittance matrix.

It is sometimes convenient to choose the character-

istic impedances of the equivalent transmission lines as

unity for all modes. As we have seen before (5b) does

not allow us that choice unless we resort to the modified

definition of complex power flow as given by (7a) and

(7 b). Using (15) we obtain

K1.K2.* = 1

for both propagating and evanescent modes. It is now

possible to choose

The properties of the impedance matrix are now some-

what different. It is convenient to partition the voltage,

current and impedance matrices as follows:

v,

[1[ [GA k] r,
v, = 1[1[z,.] [Ze.] 1.

(18)

where the subscripts P and e refer to propagating and

evanescent modes.

The reciprocity relation (11) now becomes

The upper sign holds for E modes and the lower sign for

H modes. Consider now the following conditions for the

terminal planes:

Condition 1)

il
-o

0

With

[Vp’] = Zji[I~’] [V*’] = Z~j[Ifl’]

we obtain

Z{j = Zj~.

The submatrix [ZPP] is symmetric. We now assume

that only E or H modes are present, otherwise, because

of the sign ambiguity in (19) further partitioning of the

impedance matrix is necessary to obtain its properties.

Condition 2)

We then obtain

Z~, = Zfj for the [z..] submatrix,
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Condition 3)

11,’] =

l~ith

‘(l

o

I“p%

,6

Ifaskal:
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.o -

0

1:,2

i).

Lvp’]= zp,’~[l.’] [V,z]= Zepj’[Irll

we obtain

zpe~i * jzepi~ = () (20)

or more generally

If we now impose the energy condition for a lossless

structure on the impedance matrix we have

P = O = Re [~P*Vp i- jl.*v.] = Re [1P*zPP12]

+ Re [~ l,*z,.1.] + Re [lP*ZP,I,]

+ Re [ tjI.*z~PIP].

Therefore

[Zp,] + [2P,*] = O [Zp,] is imaginary

[Zee]

Also

Therefore

but

Then

(21)

Therefore

[Zg,] is imaginary

[2P,] is real.

SCATTERING MATRIX

An alternate description of waveguide discontinuities

is by means of the scattering matrix.

IVe define the matrix by

v– = St”+.

If we choose Kln = K“z. = 1 for all modes then

v=v++v- =z(~++~-)=.z(~+ –

(z – U)v’ = (z+ u)v-

(22)

v-)
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and

.S = (z + U)-’(2 – u). (23)

The matrix S given by (23) is not symmetric since Z

is not symmetric for this case. Also S is not a unitary

matrix any more.

Conditions (14) and (15) do not lead to a simple rela-

tionship between the impedance matrix and the scat-

tering matrix, because the characteristic impedances of

the equivalent transmission lines are real for propagat-

ing modes and imaginary for evanescent modes. The

properties of the scattering matrix as given by (23) will

be studied in a later part of this paper.

MATRICES OF PERIODIC .4 RLL~YS OF SC~~~ERERs

we now consider a plane of lossless obstacles arranged

in a periodic array; no longer is it possible here to use

normalization conditions (14) or (15) because the nor-

mal mode solutions in the structure are always complex

such as to satisfy periodic boundary conditions in the

transverse plane.

The following normalization procedure, in the con-

jugate sense, can be used for both a lossless discontinuity

in a guide and an array of lossless scatterers.

Let

Ss
e. X h~*” dS = Y.*

Ss
en. e,n*dS = Y~*N.6n~ (24)

s s

where S denotes the cross section of the unit cell in the

structure and N. is a positive real normalization con-

stant.

It should be noted that it is still possible to normalize

the modes in a lossless periodic structure as in (14) or

(15) provided one rest~icts propagation to incidence

normal to the plane. That is indeed the case since the E

and II modes are orthogonal in a perioclic structure of

this sort just like in a waveguide. Again consider two

cases:

Case I)

J’se,,. en*dS = N. = 1 (25)
s

Case II)

1

1
~ for propagating modes

nfl

u ie,,.e,,*dS = ‘ n . (26)
s

1
T $ for evanescent modes

m

The upper sign holds for E modes and the lower for H

modes. A reciprocity relation can be written for the

field in the structure as follows:

v. (’?Y x H*2 + E*2 x H’) =: o. (27)



188 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

However, this relation assumes a lossless structure.

Therefore, it is easier to use directly the energy conrli-

tion.

The complex Poynting vector integrated over the

terminal planes of a unit cell yields

1 SsE X ZZ*.dS = 2j@T’m – W,) = ; ~1* (28)
7

if one defines complex power in the sense of (5b) with

normalization given by (25) or (26).

The structure is lossless so

P = O = ~ Re (~1*) = +(~*Z1 + ~*~*1)

or Z+~* = O. The impedance matrix is thus skew-

hermitian.

However, if normalization condition (26) is used to-

gether with the power definition (7a) and (7b) the com-

plex integration yields

Re (lP*ZPPIP) + Re ( fj~~*Z,,l~) + Re (~,*-Z~J~)

+ Re ( +j~.*Z,J1l) = O

where [z] is partitioned as in (18). We must then have

[z,,] + [2,.*] = o or [z.,] is skew-hermitian

[z,,] - [ze,*] = O or [z,,] is hermitia.n

[Zpe] + [j2ep*] =0.

This impedance matrix is related to the scattering

matrix by means of (23). No simple relationship exists

between the S and Z matrices obtained from any other

normalization.

To obtain the properties of the scattering matrix we

partition it as follows:

[v-l [
P [.%.1 [s,81 v,+

Ve- = 1[ 1[sap] [S,e] v.+
(29)

The real power is given by

P = o = (V,+)* VP+ – (V*-) vp-

+ j[(ve+)’ve- – (17-) *VC+] = o (30)

for a lossless structure.

LTsing (29) this becomes

(v.+)’ [U – S.V*S,2] Vp+

- (re+)*[spg*s,eT j(s.. - 3..*)] V.+

- (V.+)”[sp,’spp T js.,lv.+

– (PP+)*[.Q*S,, + jsep’]v.+ = o.

This then yields

[S1,P*] [SPP] = [U] or [SP1,] is unitary

[.S.. - S,c’] = i j[s.e”] [s,,]

[S,,*] [’s’,6] + [jsep] = o.

The above scattering matrix is defined with normaliza-

tion given by’ (26) and power definition given by (7a)

and (7 b).

CONCLUSION

In conclusion we have shown that for a lossless dis-

continuity in a waveguide it is always possible to choose

the equivalent voltages and currents such as to obtain

an impedance matrix which is symmetric and imaginary

just like in the case when only propagating modes are

present. For this case however the characteristic im-

pedance of the equivalent transmission lines are real for

propagating modes and imaginary for the evanescent

modes. This normalization is preferable when both E

and H modes are present because it avoids the sign

ambiguity of (19) in the derivation of the properties of

the impedance matrix.

If one tries to make all characteristic impedances of

the transmission lines real for all modes the correspond-

ing impedance matrix is no longer symmetric or imagi-

nary.

For a periodic array of scatterers it is possible to

choose voltages and currents such that the impedance

matrix is skew-hermitian. Although the structure is

reciprocal the impedance matrix is not symmetric.

The scattering matrix is no longer symmetric or uni-

tary in either case; it is only possible to obtain a unitary

submatrix corresponding to propagating modes.
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